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The performance of a nuclear resonance detection system can be
quantified using binary detection theory. Within this framework,
signal averaging increases the probability of a correct detection
and decreases the probability of a false alarm by reducing the
variance of the noise in the average signal. In conjunction with
signal averaging, we propose another method based on feedback
control concepts that further improves detection performance. By
maximizing the nuclear resonance signal amplitude, feedback
raises the probability of correct detection. Furthermore, informa-
tion generated by the feedback algorithm can be used to reduce the
probability of false alarm. We discuss the advantages afforded by
feedback that cannot be obtained using signal averaging. As an
example, we show how this method is applicable to the detection
of explosives using nuclear quadrupole resonance.
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First, signal averaging is not as effective in reducing th
amplitude of correlated noisé); Second, the number of wave-
forms available for averaging is constrained by the time allot
ted for detection. Although signal averaging decreases tl
noise amplitude to some extent, it does not increase the a
plitude of the nuclear resonance signal.

The amplitude of the nuclear resonance signal is determin
by the pulse parameters. In most detection experiments there
insufficient a priori information to choose pulse paramete
values that maximize the signal amplitude. For the case |
landmine detection using NQR, the optimum values depend ¢
unknown factors such as the temperature of the explosive a
the location of the explosive with respect to the search @il (
Under these circumstances one cannot obtain the maximt

Key Words: binary signal detection; receiver operating charac-
teristics; feedback control; nuclear quadrupole resonance; explo-
sives detection.

SNR using a fixed set of pulse parameters.

We previously demonstrated that feedback can be used
optimize a single pulse parameter, either pulse width or offs
frequency, in the strong off-resonant comb (SORC) sequen
(8, 9. By adjusting pulse parameters automatically, feedbac
provides a way of increasing the amplitude of the nuclee

Nuclear resonance provides a powerful tool for the nonifiesonance signal.
vasive detection of materials such as underground wa)er ( This paper quantifies the effect of feedback on the perfo
explosives 2), and narcotics 3). Detection performance is mance of a nuclear resonance detection system using bin:
limited by a poor signal-to-noise ratio (SNR). As a specifigignal detection theory. The effectiveness of the detectic
example, we consider a nuclear quadrupole resonance (N@R3tem is measured in terms of the probability of correc
system that detects explosives by revealing the preseritid.of detection and the probability of false alarm. These probabilitie
Although *N is essentially 100% abundant, the small zeralepend on the statistics of the noise source, the amplitude
field NQR splitting reduces the SNR causing missed detectidiite nuclear resonance signal, and a detection threshold use
and false alarms. In potential applications, such as humanitdecide whether a signal is present. By plotting the probabilit
ian demining, the probability of correct detection must be ovef correct detection versus the probability of a false alarm fc
90%, and preferably over 99.9%, while maintaining a reasovarying threshold values, a receiver operating characteris
ably small probability of false alarmy. (ROC) curve is generated. This curve provides a graphic

Signal averaging and feedback optimization of pulse parameans of assessing the performance of the detection systel
eters are two methods for improving the SNR in detection We examine the effect of feedback on the ROC curve of a
experiments. Signal averaging increases the SNR by decrdd®R detection system. Both theoretical predictions and expe
ing the amplitude of the noise component in the average sigimakental results reveal that the feedback algorithm raises tl
(5). In the case of uncorrelated noise, the noise amplitudepgobability of correct detection by increasing the signal ampli
reduced by the square root of the number of signals averagedle. Furthermore, the feedback algorithm generates inform
The SNR improvement is limited in practice by two factordion that can be used to reduce the probability of false alarr

1. INTRODUCTION
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Source |5(1) Noisy |*® | signal [A® | Threshold 8 Decision
s€{sgs } Channel Processing Detector
§=5, §=5,
FIG. 1. Block diagram of a binary signal detection system.
— g Correct Missed
Section 2 contains a brief review of binary signal detection $=8, Detection | Detection
theory and a discussion of how signal averaging and feedback
affect the ROC curve. An NQR detection system and a feed-
: . : - Source
back algorithm that maximizes signal power by automatically
adjusting two pulse parameters is described in Section 3. Fal C ¢
Experimental results are presented in Section 4. s=s, alse orrec
Alarm Rejection
2. BINARY SIGNAL DETECTION
Binary signal detection theoryl() is a useful tool for FIG. 2. Matrix of binary decision results.

studying the effect of signal averaging and feedback on the

detection of nuclear resonance signals in noise. We first con-

sider the simplified communication system in Fig. 1, where tt@ these probabilities, where each point on the curve corr
sources is restricted to be in one of two states, eitsgors,.  sponds to a fixed threshold Ideally, we would likeP; andP,

In states; the source transmits a sigreft) = s;(t), wherei = t0 be as close as possible to 0 and 1, respectively.

0 or 1. The received signa(t) is a combination of the source To better understand the information displayed by an RO
signals(t) and noise from the channel. By observir(g), the curve, we assume that the signal metti¢r) has a normal
receiver must decide whether the source is in stgter s,.  distributionN'(w, o®) with meany and variancers”. The mean
This is accomplished in two stages. First, a signal processiigletermined by the state of the source; wedet 0 whens =
unit transforms the received signgt) into a scalar metric So andp = d whens = s,. In addition, we assume that the
A(r). Second, a threshold detector compakgs) to a thresh- variances” is the same for both states of the source. Unde

old T to determine the receiver outpitising the decision rule these assumptions the probability density function of the sign
metric is

a SO! A(r) < 1—‘
“ls, AN =T. [1] N, 02, s=s,

P = { a0 oo o 2

The functionA(r) and the threshold value are chosen by the
designer. Figure 4 shows an example of the probability density func

The simplified communication system in Fig. 1 provides a
model of the nuclear resonance detection system. In this con-
text the states; represents the presence of a material that : : : _ : : :
produces a nuclear resonance signal, wbj)leepresents the ook ...... ......... .......... ........ e ,,,,, .......... e ....... i
absence of the material. The channel accounts for the presence .| ... : : : ' ‘ : : : :
of any noise source that corrupts the measuremes(tpfThe §
receiver is the spectrometer, and the scalar metric may be tge : : k : : : . :
signal power, magnitude of a spectral peak, or some oth@r 06k R ....... O R SR N R 4
function of the received signal. By comparing the meticto & | /7 0
threshold, the system decides whether a nuclear resonam:e ' “Sret0 | f : 1 : 5 5
signal is present.

There are four possible outcomes of a binary detecuoﬁ
experiment as shown in Fig. 2. The performance of the deteg
tion system is typically characterized by determining the prob-  °2 _ : . . . : . : :
ability of correct detectio?, and probability of false alarrR;. oald S S S L o e s R A J
These probabilities can be either predicted when the statistics
of the signal metric\(r) are known or computed from exper- % o1 o0z 03 o0& 05 08 07 o8 o5 1
imental data. The probabiliti€®, andP; are a function of the Probability of False Alarm
thresholdl’. The ROC curve in Fig. 3 is a two-dimensional plot FIG. 3. Receiver operating characteristic curve.
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used. The minimax approach choodet® minimize the max-
imum risk associated with choosing eithgy or s;. In the
Neyman—Pearson method, the thresHoid chosen to place a
bound on the maximum probability of a false alarm. The
Neyman—Pearson method is used in detection applicatio
where the a priori probabilities are unknown and it is unac
ceptable to have a large false alarm rate.

It is intuitive that the SNR of the signal metric should have
an effect on the ROC curve. This relationship becomes evide
if the SNR of A(r) is expressed ad ()

Probability Density

SNR= 20 |og<i>. 5]

r
OScaIar Metricd Observe that the SNR of the signal metric can be increased
either reducing the variana€’ and/or increasing the meah
Each of these approaches has a different effect on the RC
curve.
tion p(A(r)) for the two different states of the source. Given For a fixed threshold', decreasing the varianeg increases
these distributions the probabilities of a correct detection andhe probability of correct detection and decreases the probar
false alarm can be calculated. The probability of a correigy of false alarm. In contrast, increasing the metraises the
detectionP, is the light gray area under the density functiorobability of correct detection, but has no effect on the prok
N(d, ¢?) for A(r) = I'. Similarly, the probability of a false ability of false alarm. These effects can be inferred from Fig
alarmP; is the dark gray area under the density functi, 4 and are illustrated by the ROC curves in Fig. 5 for ai

a?) for A(r) = T'. These probabilities can be expressed asoperating point ., P;) defined byl = 0.5. Figure 5a shows
the ROC curves for a fixed meah= 1 and three different

FIG. 4. Probability density functions oA(r) for s = s, ands = s,.

1-Q(d—-D)/e) I'<d variances, while Fig. 5b shows the ROC curves for a fixe

Pq= { QU — d)/o) T=d variances” = 1 and three different means.
We now consider how signal averaging and feedback opt
P, = {1 - Q(-TI'/o) I'<0 3] mization can affect the ROC curve in nuclear resonance d
Q(I'/a) =0, tection systems. Signal averaging is frequently used to impro

) ] ] ] the SNR of nuclear resonance signd$ (n reference to the
whereQ(x) is a decreasing function equal to the integral of thg,gdel binary detection system in Fig. 1, the received sign:

tail of a normalized Gaussian distribution r(t) is replaced by an average sigrigt). For uncorrelated
noise, the variance of the noise in the average signal decrea
1 = y? by a factorN,, whereN, is the number of signals averaged.
Q(x) = B J eXP( - 2) dy, x=0 [4] Depending on the signal metric, a similar reduction is obtaine
Nem in the variance of\(r). As a result, signal averaging increases

the probability of correct detection and decreases the probak

It is evident from [3] and Fig. 4 that the probabilitifg andP; ity of a false alarm.
are a function ofl’, o, andd. In the general case of a communications system, the sigr

The thresholdl” is chosen so that the performance of the,(t) is typically fixed, resulting in a signal metric with a
receiver is optimum in some sense. There are several differeahstant meard. However, for nuclear resonance detectior
definitions of optimality that result in different values bf systems, the signal (t) can be altered by adjusting the pulse
Three common approaches for choosifigare the Bayes, parameters. The signal medn= d(®, ®) is a function of
minimax, and Neyman—Pearson methods. In the Bayes methadtrolled ® and exogenou® inputs. The controlled inputs
the overall cost of making a decision is obtained by assignilage adjustable and include parameters such as pulse width :
risks to the four possible outcomes of the binary detectignulse separation. Exogenous inputs cannot be altered by f
experiment. The value df is chosen to minimize the overall detection system. If the exogenous inputs are unknown, itis n
cost. This approach requires a priori knowledge of the probgessible to choose, prior to the experiment, controlled inpu
bility of the eventss = s, ands = s,. In situations where these that maximize the signal metric mean. As an example, nucle
a priori probabilities are unknown, the other two methods ameagnetic resonance provides a means to detect and detern
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FIG. 5. ROC curves for (a) fixed meath = 1 and three different variances and (b) fixed variante= 1 and three different means.

the depth of groundwater). In this case, water depth is ansignal meard increases the probability of correct detection. If
exogenous input that is unknown, and so it is not possible aaly a single signal metrid (r) is used, then the probability of

initially choose pulse parameters that yield the largest nucldalse alarm remains unchanged. It would be advantageous
resonance signal. this probability could be lowered using data provided by th

In a series of earlier papers we showed that even when feedback algorithm.

exogenous inputs are unknown, it is possible to maximize theWe now show that the feedback system does provide info
mean of the signal metric by automatically adjusting the comation that reduces the probability of a false alarm. Th
trolled inputs 8, 9). As illustrated in Fig. 5b, maximizing the algorithm presented in Section 3 iteratively tunes two separa
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pulse parameters to maximize the mehnThe kth iteration k=0 k=1 Pulse parameter set index
generates a signal metrddr (k)), and the algorithm terminates A k)
after completing\ iterations. The detection rule in [1] uses the w® "H“ H H ces H H H ces
single metricA(r(N)) to make a decision. We consider a
n=0 | n=1 n=0 n=1 NQR signal index

modified detection rule based on majority voting, where the

receiver output is set to staw only if the majority of the
signal metricsA(r(1)), ..., A(r(N)) exceed the threshold
value (1).

T

FIG. 7. SORC pulse sequence notation.

The majority-voting rule produces a probability of correct

detectionP{ and probability of false alarrR{". These proba

bilities are calculated in terms of the number of iteratidhs
and the probabilities of correct detectiBg(k) and false alarm
P:(k) based on a single value of the signal metxig (k)). We

assume that the probability of false alarm is the same for e
iteration because the control algorithm does change the v
anceos” and the thresholdl is fixed. For now, we also assum

N/2. Figure 6 show®" as a function of; for three different
values ofN. The solid curve shows that whe¥ = 1, the
probabilities obtained using majority voting and a single vot
are identical as expected. FNrgreater than 1, the majority-
ing probabilityP{" is less than the individual probabilify;

HRenP, < L. On the other hand, wheR, > %, the majority-
e\/oting probability is greater than the single probability.

that the pulse parameters are fixed, so that the probability OfFigure 6 shows that the majority-voting rule decreases t

correct detection is the same for each iteration.
Let P{" represent the probability of a correct detection=(
d) or false alarmi( = f) using the majority-voting rule foN

probability of a false alarm when the probability of false alarn
for each iteration is less than one-half. Likewise, the majority
voting rule increases the probability of correct detection a

iterations. The probability of correct detection or false alarrp&ng as the probability of correct detection for a single iteratio

for a single iteration is denoted d3. In N iterations the

is greater than one-half.

number of correct detections or false alarms is a ra”domApplying the majority-voting rule is not helpful when the

variable with a binomial distribution. It follows that the prob
ability of obtaining at leastiN/ 2[Jcorrect decisions or false
alarms is

N

s |

k=[N/20

N

Jera-rr e

pulse parameters result in a signal metric whose mean is le
than the threshold. In this case, because the probabilitl)

of correct detection is less than one-half, a reduction in tr
probability P{" of false alarm is accompanied by a reduction ir
the probabilityP ' of correct detection. On the other hand, if a
feedback algorithm raise3,(k) above one-half, then the ma
jority-voting rule lowersP{" and raisePy. Experimental re
sults presented in Section 4 support this claim.

where [N/20is the smallest integer greater than or equal to

e
[

a

Majority Probability
ol €

0.4 05 06
Single Probability

FIG. 6. Relationship between the majority probabil®y' and the proba
bility P; of a single decision.

3. NQR DETECTION SYSTEM

This section describes an NQR detection system that utiliz
feedback control to optimize multiple pulse parameters. NQ!
signals are generated using the SORC sequence, a peric
series of identical RF pulse&?). As the sequence progresses
the NQR signal observed between the RF pulses reache:s
steady-state waveform. The amplitude of the SORC wavefor
depends on the pulse separatigrpulse widtht,,, and offset
frequencyAf that define the controlled inpuf3. The SORC
signal intensity is also dependent upon temperatlLi8y, dis-
tance between the sample and the c&j] &nd composition of
the substance to be detectddl) This collection of variables
defines the exogenous inpuls

The SORC pulse sequence is shown in Fig. 7. The contr
algorithm automatically adjusts the pulse widlik) and off
set frequencyAf(k) for a constant pulse separatian The
controlled inputs are held constant over a fixed number of R
pulses so that the SORC signal reaches a steady-state we
form beforeN, waveforms are acquired for signal averaging
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v
Signal across Low Noise Receiver Pha's?.
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© Preamp Gate Receiver
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Averager LPF
V?(m) Signal VEm) A0 8th order
* A ADC Butterworth
verager LPF
FIG. 8. Block diagram of the receiver and data acquisition system.
The indexk references the pulse parameter set, while individ- M—1
ual NQR waveforms for each parameter set are !ndexenl. by Pyk) = " > s¥(m; k), (8]
Figure 8 shows the block diagram of the receiver and data m=0

acquisition system. The receiver is gated on 240after the

RF pulse to avoid saturation due to ringing in the probe coil.

The phase-sensitive receiver mixes the gated signal induced\’?ﬁeres Is the steady-state SORC waveform ob_tained usi_ng t
the probe coil with the excitation frequenay + Af. The controlled input®(k). In the presence of noise the signal

in-phaseV'(t; k) and quadratur&?(t; k) components of the metric is expressed as

receiver output are passed through identical eighth-order But-

terworth lowpass filters with a cutoff frequency of 10 kHz to 1 M1

produceV;(t; k) andV(t; k), respectively. The signalé(m; Pk =— 3 [s(m; k) + n(m)]? 9]
k) andV2(m; k) are obtained by sampling the filtered signals M m=0

at 100 kHz, wheren= 0, 1, ... ,M — 1 andM is the number

of sample points per waveform. The sampled signals are added ) )
point by point to form the averag&(m: k) andVe(m; k) for wheren(m) is a random variable that does not depend on th
N, SORC signals. controlled input® (k). We assume that th&(m) are indepen-

A signal metric is needed for both the control algorithm anglent and identically distributed normal random variables witl

the threshold detector. A wide variety of signal metrics €60 mean and varianee;. The signal metricP(k) is also a

available, including peak-to-peak voltage, midsignal ampfiandom variable with a noncentraf density of degreeM.

tude, signal energy, and peak FFT magnitu@e (Ve use the BecauséM is on the order of 100, this density can be approx
SORC signal power defined as imated by a normal distribution with mean,(k) and variance

os(k) (10),

1Mt oK) = P(k) + o2
B0 = or 3 (VM k)~ Voo)?, 7 el = 24

2 4

LK) = T ) + ot
Usn()_M s() M

(10]

whereV . is the DC offset measured at the filter output in the

absence of an NQR signal. The dual tuning algorithm is an extension of methods de
The statistics of the signal metri@(k) are required to veloped earlier for optimizing the pulse widt8) @nd the offset

investigate the effect of noise on the dual tuning algorithm. fnequency 9). A gradient ascent algorithm iteratively maxi-

the absence of noise, the signal metfigk) is defined as mizes the signal metri@® (k) using the update rules
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tu(k + 1) = t (k) + A (KV P(k—1) k=2,4,6, - maximizes the signal metric on any given iteration. Conside
[11] the simplified update algorithm for a single parameter

Af(k + 1) = Af(k) + Ay VaP(k — 1) k=3,57, - 0(k+ 1) =0(k + AV,2(k), [17]
[12]

where the gradient is approximated as

to automatically adjust the pulse width(k) and offset fre _ B _ _ B
quencyAf(k). The initial pulse parameter valugq0), t,,(1), VP (k) = G(@(k) - Pk = 1)G(8(k) — (k= 1)).

Af(0) = Af(1), and Af(2) are chosen based on estimated [18]
values of the exogenous inputs. The gradien{sP(k — 1)

andV,®(k — 1) are approximated a$.(9) The following definitions are needed:

AP (k) = P(k) — Pk — 1) [19]

Vi P(k—1)=G(®Pk-1) —Pk-2)) [20]
A@sn(k) = 9)ssn(k) - 9}ssn(k - 1)

X G(ty(k — 1) — t (k= 2)) [13]

From [10], it follows thatA? (k) is a normal random variable
VuPk—1) =G(Pk—-1) —Pk—-2) with meanpu..(k) and variancer?,(k),

X G(Af(k— 1) — Af(k—2)), [14]
IJ/ASn(k) = A@s(k)

452 407
where oialk) = 31 (P + Pk = 1) + . [21]
1 x=0 - .
G(x) = { 1 %<0 [15] The probability that the algorithm moves the paramétg)

in the correct direction at thith iteration is

The gradient¥ , % (k) andV 2 (k) only take on values of 1.
The sign determines the direction in which the parameter
should be incremented in order to increase the signal metric.. .
The learning factora, (k) anda ; determine the magnitude of USINg Bayes theorem and the definition G{x), the proba-
the change in pulse parameters. bility P(k) can be expressed as

Because the gradients in [13] and [14] are always nonzero,
the gradient algorithm converges to a limit cycle instead of a Pe(K) = P(A2?(k) = 0]AP (k) = 0) P(AP? (k) = 0)
single point. If_ tr_\e metric _ma_lxima are sharp with respect to + P(AP (k) < 0|AP (k) < 0) P(AP (k) < 0)
parameter variations, the limit cycle will occur about the op-

Po(k) = P{G(AP(k)) = G(AP(K))}. (22]

timal value. This is the case for offset frequency. In contrast, [23]
the metric max_ima are no.t as sharp for the pulsg width. To — [1 _ Q(““ﬂ) } P(AP (K) = 0)
reduce the radius of the limit cycle about the optimal pulse Oasn
width the learning facton, (k) is decremented as8) — taen
+ [1 - Q() ] P(A? (k) <0) [24]
20us k=0,2,...,8 | |AS”
A (k) ={15pus k=10,12,...,18 [16] 4 M asn
10 us k> 20. 1=Q . ) [25]

A fixed learning factorA,; = 50 Hz is used for tuning the Figure 9 shows the probability of a correct update as a functic
offset frequency9). The control algorithm tunes the controlledof |w,.|/oss This result shows tha® (k) is always greater
inputs for a fixed number of iterations. The number of iterdhan one-half and approaches 1 wigr,|/o s, > 1. It follows
tions is chosen sufficiently large to allow convergence when #mt the performance of the feedback algorithm is improve
NQR signal is present. when signal averaging is used to reducg, In addition, the

It is important to consider the effect of noise on the gradientore sensitive the signal metric is to changes in the puls
tuning algorithm. We derive an expression for the probabilifyarameter, that is, the larger the valueuf,, the more likely
that the algorithm moves the controlled input in a direction théte algorithm will update correctly.
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FIG. 9. Probability of gradient algorithm correctly updating parameter.

4. EXPERIMENTAL RESULTS

frequencies ranging from-4 to 4 kHz in 50-Hz steps. This
experiment was repeated for pulse widths ranging from 10
300 ps in 10us steps. For each pulse width and offset fre
quency,N, = 1000 steady-state SORC signals were filtere
and averaged. The signal pow@&(t,, Af) for each pulse
parameter set was calculated using [7].

The relationship between steady-state signal power ai
pulse parameters is shown in Fig. 10 and is consistent wi
earlier results 12, 1§. As the offset frequency approaches
zero, the NQR signal vanishes. The series of steep valle
arises from interference between the NQR signals immediate
following and preceding consecutive RF pulses. The ratio ¢
the maximum and minimum observed signal power is appro
imately 10, corresponding to a 20-dB variation in SNR acros
the pulse parameters used to generate Fig. 10.

The ability of the dual tuning algorithm to maximize the
signal power and improve the ROC curve is demonstrate
using a series of experiments with the external noise sour
connected. In each experiment the initial pulse widths ar
offset frequencies are chosentgf) = 20 us,t,,(1) = 40 us,
Af(0) = Af(1) = 0 Hz, andAf(2) = 50 Hz, respectively.
These parameters are purposely chosen to produce a sn

This section presents experimental data that demonstratestgnal power. The exact offset frequency is unknown due 1
ability of the dual tuning algorithm to optimize the pulse widtliemperature variations of the sample. In each experiment t
and offset frequency. The results from a series of detectidnal tuning algorithm is terminated after 40 iterations, provid
experiments show the effect of the dual tuning algorithm on theg 20 updates in pulse width and 20 updates in offset fre
ROC curve. A 50-g sample of sodium nitrite at room tempeguency.
ature serves as a model compound for the explosive RDX. AllResults from a single tuning experiment without averagin

experiments were conducted near theransition at 3.6 MHz.

(N, = 1) are shown in Fig. 11Figure 11a shows the normal-

The v_ transition is dominated by a single spin—lattice relaxzed signal power at each iteration of the dual tuning algorithn
ation timeT,, of 0.3 s. The spin—spin relaxation tinfg and while Figs. 11b and 11c show the corresponding values

the T% lineshape parameter are 6 and 1 ms, respectively.

offset frequency and pulse width. The squares and circles she

A custom-made 1-kW pulsed spectrometer enables real-tiai@ta obtained with and without a sample present, respective

adjustments of the controlled inputs during an experim&bt (

The sodium nitrite is packed into a 1-inch diameter, 3-inch-
long glass vial over which the probe coil is tightly wound. The
quality factor of the probe coil is approximately 150. The

statistical properties of the measurement noise are controlleg, - :

by mounting the probe coil within a shielded enclosure along
with a one-turn coil connected to an external lowpass Gaussign 4
noise source with a cutoff frequency of 10 MHz. The ampli§

tude of the noise source is adjusted so that the noise level at tag; |-~ ' £

receiver output matched that for an unshielded coil in oug

laboratory. The amplitude of the applied RF pulses is fixed s@o_g_ o ’«

that the magnetic field amplitude at the coil center is approxg

imately 5 G, which is comparable to the field strength used i§ 01"

a commercial NQR detection system).(The corresponding

output power of the transmitter is approximately 25 W. In all L

experiments the pulse separation is set at 1 ms.
The dependence of the SORC signal power on pulse width
and offset frequency is experimentally measured. Holding the

pulse width constant and with the external noise source turnegg. 10.
off, the steady-state SORC signal was recorded for offgefquency.

Offset Frequency (kHz)

SORC signal power as a function of pulse width and offset

Pulse Width (us)
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old T'. Taking into account the statistical variation betweel
experiments, there is little change in the probability of fals
alarm. Results obtained with the majority-voting rule for three
interactions of the tuning algorithm are shown by the dotte
curve. In comparison to the dashed ROC curve, the majorit
voting rule increased the probability of correct detection an
decreased the probability of false alarm.

5. DISCUSSION

Figure 12 shows that the dual feedback algorithm increas
the probability of correct detection, but has limited effect or
the probability of false alarm unless the majority-voting rule is
used. Compare this result against the theoretical ROC curv
shown in Fig. 5. A similar effect is achieved by increasing the
signal metric mean. This comparison suggests two conclusiol
First, the binary signal detection system shown in Fig. 1 can t
used as a conceptual model for describing the performance
a nuclear resonance detection system. Second, adjusting
pulse parameters increases the signal metric mean, an impro
ment that is not attainable using signal averaging.

FIG. 11. Tuning history when the signal power is derived from a single Signal averaging reduces the variance of the noise in tl

(N, = 1) SORC waveform.

signal metric, but does not increase the mean of the sigr
metric. In situations where the noise is correlated or the avai

whereas the solid curves are best-fit polynomials that show thlele data are limited, the improvement afforded by signe
trajectory of the signal power and tuned parameters. In thgeraging is constrained. Under these circumstances, adjust
absence of a sample, only a small variation in the signal powtbe pulse parameters to increase the NQR signal power pi
is observed. In contrast, when the sample is present, the dvides another tool for improving the ROC curve.

tuning algorithm significantly increases the signal power and Having motivated the importance for adjusting the puls

hence the SNR of the NQR measurement.

parameters to improve the ROC curve, we now consider met

The ROC curves in Fig. 12 demonstrate the effect of feedds by which the adjustments can be made. One possibility
back on the probabilities of correct detection and false alartq. systematically apply different pulse parameter sets ar
Data for the ROC curves are obtained in a series of 20@cord the corresponding signal metrics. Depending upon t

experiments, half with the sample present and half with the
sample absent. For each experiment, the signal power is com-

pared against the thresholdto decide whether a sample is 1

present. LeNy(N;) represent the number of experiments where iy

the sample is present (absent) and the signal power is larger

thanI'. The probabilities of correct detection and false alarm 0877 ¢~
are N,/100 andN;/100, respectively. In order to generate the,(é: 07kt

ROC curve the probabilities of correct detection and falsg

alarm must be generated for a range of different thresho%ﬂoﬁI
values. Taking into account the peak signal power in Fig. 1@ 0.5h

and the variance of the external noise source, each ROC curge

is generated using 100 valueslofanging from 0 to 1 in 0.01 4

steps. £03
The solid ROC curve in Fig. 12 is generated by fixing the~

bility

pulse parameters at the initial values. The dashed and th@?2[
dash—dotted ROC curves are generated using the signal powey|

from the last iteration of the dual tuning algorithm for three and

: L TS k =3 Majority | :
................. vl © FixedI e

eight pulse parameter updates, respectively. The dual tuning %
algorithm increases the probability of a correct detection as

0.2 0.4 0.6 0.8 1
Probability of False Alarm

indicated by the open circles that correspond to a fixed thresh- FIG. 12. ROC curves for tuned and untuned pulse parameters.
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l—g-——rrree=== = v resonance are smaller than the surrounding maxima. Seco
09 =t : : : the algorithm requires, as an input, the steady-state response
the magnetization to the pulse sequence. This is not a limitatic
0.8 when the spin—lattice relaxation time is short, as is the case f
g 07 RDX. On the other hand, TNT has a much larger spin—lattic
§ relaxation time than RDX and a short spin—spin relaxatio
506 time. As a result, for TNT, it is difficult to obtain a steady-state
§05 ; ; : waveform. For these situations, the dual tuning algorithm mu.
“304 _______________ - —_ Eipgﬁzﬁzi EL’L?% ?)/tgtse o | be mod_|f|eq to tgke into account the dynamic response of tf
= g T Prepdicte 4. Four Votes 5 magnetl_zatlon signal tq the puls_e sequence. We are curren
Bosf] R O Fixedl e 4 developing a dual tuning algorithm that overcomes both c
Ry : T T :

these limitations by taking into account the dynamic behavic

02_ ..................................................................................... - of the NQR response.

0.1 L. ~ 4444444444444444 S pee S |
0 i i i i 6. CONCLUSION
0 0.2 0.4 0.6 0.8 1

Probability of False Alarm _ _ )
_ . _ ~ This paper investigated the effect of feedback on the RO
FIG. 13. Experimental and predicted ROC curves using the majontyéurve of an NQR detection system. We successfully demo
ti le. . . . .
voting rule strated that a gradient tuning algorithm can automatically a

q £ h | b ¢ oul ust two pulse parameters so that the nuclear resonance sig
egree of Improvement sought, a large number of pulse %twer is increased. As a result, the probability of correc

rameters must be used, thereby increasing the detection ti ction is raised. We used a majority-voting rule that too
We demonstrated_gnother approach, bas_ed on feedb_ack co ﬁQj;ntage of the information generated at each iteration of t
concepts, that utilizes the measured signal to adjust pui@ hack algorithm. The majority-voting rule reduced th
parameters automatically, thereby maximizing the NQR signglopapijity of false alarm and further increased the probabilit

power. In comparison to the_ former approach, _the feedpaBFcorrect detection. The use of feedback to improve the RO
algorithm determines the optimal parameters using fewer itef; e in nuclear resonance detection systems is beneficial

ations. situations where correlated noise is present and the pul

In addition to increasing the probability of correctdetectior}Jarameter values that yield the largest signal amplitude a
we also showed that the feedback algorithm generates a S%?t?ally unknown

of signal metric values that can be used to reduce the proba-
bility of false alarm. A majority-voting rule was implemented,
and the results in Fig. 12 show a reduction in the probability of ACKNOWLEDGMENT

false alarm and an increase in the probability of correct detec- ) )
tion This work was funded in part by contracts from the United States Arm
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