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The performance of a nuclear resonance detection system can be
quantified using binary detection theory. Within this framework,
signal averaging increases the probability of a correct detection
and decreases the probability of a false alarm by reducing the
variance of the noise in the average signal. In conjunction with
signal averaging, we propose another method based on feedback
control concepts that further improves detection performance. By
maximizing the nuclear resonance signal amplitude, feedback
raises the probability of correct detection. Furthermore, informa-
tion generated by the feedback algorithm can be used to reduce the
probability of false alarm. We discuss the advantages afforded by
feedback that cannot be obtained using signal averaging. As an
example, we show how this method is applicable to the detection
of explosives using nuclear quadrupole resonance. © 2000 Academic

Press

Key Words: binary signal detection; receiver operating charac-
teristics; feedback control; nuclear quadrupole resonance; explo-
sives detection.

1. INTRODUCTION

Nuclear resonance provides a powerful tool for the no
vasive detection of materials such as underground wate1),
explosives (2), and narcotics (3). Detection performance
limited by a poor signal-to-noise ratio (SNR). As a spec
example, we consider a nuclear quadrupole resonance (
system that detects explosives by revealing the presence o14N.
Although 14N is essentially 100% abundant, the small z
field NQR splitting reduces the SNR causing missed detec
and false alarms. In potential applications, such as huma
ian demining, the probability of correct detection must be
90%, and preferably over 99.9%, while maintaining a rea
ably small probability of false alarm (4).

Signal averaging and feedback optimization of pulse pa
eters are two methods for improving the SNR in detec
experiments. Signal averaging increases the SNR by de
ing the amplitude of the noise component in the average s
(5). In the case of uncorrelated noise, the noise amplitu
reduced by the square root of the number of signals aver
The SNR improvement is limited in practice by two facto
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First, signal averaging is not as effective in reducing
amplitude of correlated noise (6). Second, the number of wav
forms available for averaging is constrained by the time a
ted for detection. Although signal averaging decreases
noise amplitude to some extent, it does not increase the
plitude of the nuclear resonance signal.

The amplitude of the nuclear resonance signal is determ
by the pulse parameters. In most detection experiments th
insufficient a priori information to choose pulse param
values that maximize the signal amplitude. For the cas
landmine detection using NQR, the optimum values depen
unknown factors such as the temperature of the explosiv
the location of the explosive with respect to the search coi7).
Under these circumstances one cannot obtain the max
SNR using a fixed set of pulse parameters.

We previously demonstrated that feedback can be us
optimize a single pulse parameter, either pulse width or o
frequency, in the strong off-resonant comb (SORC) sequ
(8, 9). By adjusting pulse parameters automatically, feed
provides a way of increasing the amplitude of the nuc
resonance signal.

This paper quantifies the effect of feedback on the pe
mance of a nuclear resonance detection system using b
signal detection theory. The effectiveness of the dete
system is measured in terms of the probability of cor
detection and the probability of false alarm. These probabi
depend on the statistics of the noise source, the amplitu
the nuclear resonance signal, and a detection threshold u
decide whether a signal is present. By plotting the probab
of correct detection versus the probability of a false alarm
varying threshold values, a receiver operating characte
(ROC) curve is generated. This curve provides a grap
means of assessing the performance of the detection sy

We examine the effect of feedback on the ROC curve o
NQR detection system. Both theoretical predictions and e
imental results reveal that the feedback algorithm raise
probability of correct detection by increasing the signal am
tude. Furthermore, the feedback algorithm generates info
tion that can be used to reduce the probability of false al
1090-7807/00 $35.00
Copyright © 2000 by Academic Press

All rights of reproduction in any form reserved.



tio
ba
ee
all
n

r
s th
d co
s th
s

ce

ssi
c
-
le

T e

s
co
tha
e
se

e
oth
to
na

ctio
ete
rob

tist
er-
e
lot

orre-

OC
l

s he
nder
ignal

nc-

306 BLAUCH, SCHIANO, AND GINSBERG
Section 2 contains a brief review of binary signal detec
theory and a discussion of how signal averaging and feed
affect the ROC curve. An NQR detection system and a f
back algorithm that maximizes signal power by automatic
adjusting two pulse parameters is described in Sectio
Experimental results are presented in Section 4.

2. BINARY SIGNAL DETECTION

Binary signal detection theory (10) is a useful tool fo
tudying the effect of signal averaging and feedback on
etection of nuclear resonance signals in noise. We first
ider the simplified communication system in Fig. 1, where
ources is restricted to be in one of two states, eithers0 or s1.

In statesi the source transmits a signals(t) 5 si(t), wherei 5
0 or 1. The received signalr (t) is a combination of the sour
signals(t) and noise from the channel. By observingr (t), the
receiver must decide whether the source is in states0 or s1.
This is accomplished in two stages. First, a signal proce
unit transforms the received signalr (t) into a scalar metri
L(r ). Second, a threshold detector comparesL(r ) to a thresh
old G to determine the receiver outputŝ using the decision ru

ŝ 5 Hs0, L~r ! , G
s1, L~r ! $ G. [1]

he functionL(r ) and the threshold valueG are chosen by th
designer.

The simplified communication system in Fig. 1 provide
model of the nuclear resonance detection system. In this
text the states1 represents the presence of a material
produces a nuclear resonance signal, whiles0 represents th
absence of the material. The channel accounts for the pre
of any noise source that corrupts the measurement ofs(t). The
receiver is the spectrometer, and the scalar metric may b
signal power, magnitude of a spectral peak, or some
function of the received signal. By comparing the metric
threshold, the system decides whether a nuclear reso
signal is present.

There are four possible outcomes of a binary dete
experiment as shown in Fig. 2. The performance of the d
tion system is typically characterized by determining the p
ability of correct detectionPd and probability of false alarmPf.
These probabilities can be either predicted when the sta
of the signal metricL(r ) are known or computed from exp
imental data. The probabilitiesPd andPf are a function of th
thresholdG. The ROC curve in Fig. 3 is a two-dimensional p

FIG. 1. Block diagram of a binary signal detection system.
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of these probabilities, where each point on the curve c
sponds to a fixed thresholdG. Ideally, we would likePf andPd

to be as close as possible to 0 and 1, respectively.
To better understand the information displayed by an R

curve, we assume that the signal metricL(r ) has a norma
distribution1(m, s2) with meanm and variances2. The mean
is determined by the state of the source; we letm 5 0 whens 5

0 andm 5 d whens 5 s1. In addition, we assume that t
variances2 is the same for both states of the source. U
these assumptions the probability density function of the s
metric is

p~L~r !! 5 H1~0, s 2!, s 5 s0

1~d, s 2!, s 5 s1.
[2]

Figure 4 shows an example of the probability density fu

FIG. 2. Matrix of binary decision results.

FIG. 3. Receiver operating characteristic curve.
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307DETECTION OF NUCLEAR RESONANCE SIGNALS
tion p(L(r )) for the two different states of the source. Giv
these distributions the probabilities of a correct detection a
false alarm can be calculated. The probability of a co
detectionPd is the light gray area under the density func
1(d, s 2) for L(r ) $ G. Similarly, the probability of a fals
alarmPf is the dark gray area under the density function1(0,
s2) for L(r ) $ G. These probabilities can be expressed a

Pd 5 H1 2 Q~~d 2 G!/s! G , d
Q~~G 2 d!/s! G $ d

Pf 5 H1 2 Q~2G/s! G , 0
Q~G/s! G $ 0, [3]

whereQ( x) is a decreasing function equal to the integral of
tail of a normalized Gaussian distribution

Q~ x! 5
1

Î2p E
x

`

expS2
y2

2 Dd y, x $ 0. [4]

It is evident from [3] and Fig. 4 that the probabilitiesPd andPf

are a function ofG, s, andd.
The thresholdG is chosen so that the performance of

receiver is optimum in some sense. There are several diff
definitions of optimality that result in different values ofG.
Three common approaches for choosingG are the Bayes

inimax, and Neyman–Pearson methods. In the Bayes m
he overall cost of making a decision is obtained by assig
isks to the four possible outcomes of the binary detec
xperiment. The value ofG is chosen to minimize the over
ost. This approach requires a priori knowledge of the pr
ility of the eventss 5 s0 ands 5 s1. In situations where the

a priori probabilities are unknown, the other two methods

FIG. 4. Probability density functions ofL(r ) for s 5 s0 ands 5 s1.
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used. The minimax approach choosesG to minimize the max
imum risk associated with choosing eithers0 or s1. In the
Neyman–Pearson method, the thresholdG is chosen to place
bound on the maximum probability of a false alarm.
Neyman–Pearson method is used in detection applica
where the a priori probabilities are unknown and it is un
ceptable to have a large false alarm rate.

It is intuitive that the SNR of the signal metric should h
an effect on the ROC curve. This relationship becomes ev
if the SNR ofL(r ) is expressed as (10)

SNR5 20 logS d

sD . [5]

Observe that the SNR of the signal metric can be increas
either reducing the variances2 and/or increasing the meand.
Each of these approaches has a different effect on the
curve.

For a fixed thresholdG, decreasing the variances2 increase
the probability of correct detection and decreases the prob
ity of false alarm. In contrast, increasing the meand raises th
probability of correct detection, but has no effect on the p
ability of false alarm. These effects can be inferred from
4 and are illustrated by the ROC curves in Fig. 5 for
operating point (Pd, Pf) defined byG 5 0.5. Figure 5a show
the ROC curves for a fixed meand 5 1 and three differen
variances, while Fig. 5b shows the ROC curves for a fi
variances2 5 1 and three different means.

We now consider how signal averaging and feedback
mization can affect the ROC curve in nuclear resonance
tection systems. Signal averaging is frequently used to imp
the SNR of nuclear resonance signals (5). In reference to th
model binary detection system in Fig. 1, the received s
r (t) is replaced by an average signalr#(t). For uncorrelate
noise, the variance of the noise in the average signal decr
by a factorNA, whereNA is the number of signals averag
Depending on the signal metric, a similar reduction is obta
in the variance ofL(r ). As a result, signal averaging increa
the probability of correct detection and decreases the prob
ity of a false alarm.

In the general case of a communications system, the s
s1(t) is typically fixed, resulting in a signal metric with
constant meand. However, for nuclear resonance detec
systems, the signals1(t) can be altered by adjusting the pu
parameters. The signal meand 5 d(Q, F) is a function o
controlledQ and exogenousF inputs. The controlled inpu
are adjustable and include parameters such as pulse wid
pulse separation. Exogenous inputs cannot be altered b
detection system. If the exogenous inputs are unknown, it
possible to choose, prior to the experiment, controlled in
that maximize the signal metric mean. As an example, nu
magnetic resonance provides a means to detect and dete
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308 BLAUCH, SCHIANO, AND GINSBERG
the depth of groundwater (1). In this case, water depth is
exogenous input that is unknown, and so it is not possib
initially choose pulse parameters that yield the largest nu
resonance signal.

In a series of earlier papers we showed that even whe
exogenous inputs are unknown, it is possible to maximiz
mean of the signal metric by automatically adjusting the
trolled inputs (8, 9). As illustrated in Fig. 5b, maximizing th

FIG. 5. ROC curves for (a) fixed meand 5 1 and three differ
to
ar

he
e
-

signal meand increases the probability of correct detection
only a single signal metricL(r ) is used, then the probability
false alarm remains unchanged. It would be advantageo
this probability could be lowered using data provided by
feedback algorithm.

We now show that the feedback system does provide i
mation that reduces the probability of a false alarm.
algorithm presented in Section 3 iteratively tunes two sep

variances and (b) fixed variances2 5 1 and three different means.
ent
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309DETECTION OF NUCLEAR RESONANCE SIGNALS
pulse parameters to maximize the meand. The kth iteration
generates a signal metricL(r (k)), and the algorithm terminat
after completingN iterations. The detection rule in [1] uses
single metricL(r (N)) to make a decision. We conside
modified detection rule based on majority voting, where
receiver output is set to states1 only if the majority of the
signal metricsL(r (1)), . . . , L(r (N)) exceed the thresho
value (11).

The majority-voting rule produces a probability of corr
detectionPd

m and probability of false alarmPf
m. These proba-

bilities are calculated in terms of the number of iterationN
and the probabilities of correct detectionPd(k) and false alarm
Pf(k) based on a single value of the signal metricL(r (k)). We
assume that the probability of false alarm is the same for
iteration because the control algorithm does change the
ances2 and the thresholdG is fixed. For now, we also assum
that the pulse parameters are fixed, so that the probabil
correct detection is the same for each iteration.

Let Pi
m represent the probability of a correct detection (i 5

d) or false alarm (i 5 f ) using the majority-voting rule forN
iterations. The probability of correct detection or false al
for a single iteration is denoted asPi . In N iterations the
number of correct detections or false alarms is a ran
variable with a binomial distribution. It follows that the pro
ability of obtaining at leastN/ 2 correct decisions or fals
alarms is

Pi
m 5 O

k5N/ 2

N SN
kD ~Pi!

k~1 2 Pi!
N2k, [6]

where N/ 2 is the smallest integer greater than or equa

FIG. 6. Relationship between the majority probabilityPi
m and the proba-

bility Pi of a single decision.
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N/ 2. Figure 6 showsPi
m as a function ofPi for three differen

values ofN. The solid curve shows that whenN 5 1, the
probabilities obtained using majority voting and a single
are identical as expected. ForN greater than 1, the majorit
voting probabilityPi

m is less than the individual probabilityPi

whenPi , 1
2. On the other hand, whenPi . 1

2, the majority-
voting probability is greater than the single probability.

Figure 6 shows that the majority-voting rule decreases
probability of a false alarm when the probability of false al
for each iteration is less than one-half. Likewise, the majo
voting rule increases the probability of correct detection
long as the probability of correct detection for a single itera
is greater than one-half.

Applying the majority-voting rule is not helpful when t
pulse parameters result in a signal metric whose mean i
than the threshold. In this case, because the probabilityPd(k)
of correct detection is less than one-half, a reduction in
probabilityPf

m of false alarm is accompanied by a reductio
the probabilityPd

m of correct detection. On the other hand,
feedback algorithm raisesPd(k) above one-half, then the m-
jority-voting rule lowersPf

m and raisesPd
m. Experimental re-

sults presented in Section 4 support this claim.

3. NQR DETECTION SYSTEM

This section describes an NQR detection system that ut
feedback control to optimize multiple pulse parameters. N
signals are generated using the SORC sequence, a pe
series of identical RF pulses (12). As the sequence progress
the NQR signal observed between the RF pulses reac
steady-state waveform. The amplitude of the SORC wave
depends on the pulse separationt, pulse widthtw, and offse
frequencyDf that define the controlled inputsQ. The SORC
signal intensity is also dependent upon temperature (13), dis-
tance between the sample and the coil (2), and composition o
the substance to be detected (14). This collection of variable
defines the exogenous inputsF.

The SORC pulse sequence is shown in Fig. 7. The co
algorithm automatically adjusts the pulse widthtw(k) and off-
set frequencyDf(k) for a constant pulse separationt. The
ontrolled inputs are held constant over a fixed number o
ulses so that the SORC signal reaches a steady-state

orm beforeNA waveforms are acquired for signal averag

FIG. 7. SORC pulse sequence notation.
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310 BLAUCH, SCHIANO, AND GINSBERG
The indexk references the pulse parameter set, while ind
ual NQR waveforms for each parameter set are indexedn.

Figure 8 shows the block diagram of the receiver and
acquisition system. The receiver is gated on 240ms after the

F pulse to avoid saturation due to ringing in the probe
he phase-sensitive receiver mixes the gated signal induc

he probe coil with the excitation frequencyn2 1 Df. The
in-phaseVI(t; k) and quadratureVQ(t; k) components of th
receiver output are passed through identical eighth-order
terworth lowpass filters with a cutoff frequency of 10 kHz
produceVf

I(t; k) andVf
Q(t; k), respectively. The signalsVf

I(m;
k) andVf

Q(m; k) are obtained by sampling the filtered sign
at 100 kHz, wherem 5 0, 1, . . . ,M 2 1 andM is the numbe
of sample points per waveform. The sampled signals are a
point by point to form the averagesV# f

I(m; k) andV# f
Q(m; k) for

NA SORC signals.
A signal metric is needed for both the control algorithm

the threshold detector. A wide variety of signal metric
available, including peak-to-peak voltage, midsignal am
tude, signal energy, and peak FFT magnitude (9). We use th
SORC signal power defined as

3~k! 5
1

M O
m50

M21

~V# f
I~m; k! 2 VDC! 2, [7]

whereVDC is the DC offset measured at the filter output in
absence of an NQR signal.

The statistics of the signal metric3(k) are required t
investigate the effect of noise on the dual tuning algorithm
the absence of noise, the signal metric3s(k) is defined as

FIG. 8. Block diagram of the
-
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3s~k! 5
1

M O
m50

M21

s2~m; k!, [8]

heres is the steady-state SORC waveform obtained usin
ontrolled inputQ(k). In the presence of noise the sig
etric is expressed as

3sn~k! 5
1

M O
m50

M21

@s~m; k! 1 n~m!# 2, [9]

wheren(m) is a random variable that does not depend on
controlled inputQ(k). We assume that then(m) are indepen
dent and identically distributed normal random variables
zero mean and variancesn

2. The signal metric3sn(k) is also a
random variable with a noncentralx2 density of degreeM.
BecauseM is on the order of 100, this density can be app
imated by a normal distribution with meanmsn(k) and varianc
ssn

2 (k) (10),

msn~k! 5 3s~k! 1 s n
2

s sn
2 ~k! 5

4s n
2

M
3s~k! 1

2s n
4

M
. [10]

The dual tuning algorithm is an extension of methods
veloped earlier for optimizing the pulse width (8) and the offse
frequency (9). A gradient ascent algorithm iteratively ma
mizes the signal metric3(k) using the update rules

eiver and data acquisition system.
rec
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311DETECTION OF NUCLEAR RESONANCE SIGNALS
tw~k 1 1! 5 tw~k! 1 l tw~k!¹ tw3~k 2 1! k 5 2, 4, 6, · · ·

[11]

Df~k 1 1! 5 Df~k! 1 lDf¹Df3~k 2 1! k 5 3, 5, 7, · · ·

[12]

to automatically adjust the pulse widthtw(k) and offset fre-
quencyDf(k). The initial pulse parameter valuestw(0), tw(1),
Df(0) 5 Df(1), and Df(2) are chosen based on estima
values of the exogenous inputs. The gradients¹ tw3(k 2 1)
and¹Df3(k 2 1) are approximated as (8, 9)

¹ tw3~k 2 1! 5 G~3~k 2 1! 2 3~k 2 2!!

3 G~tw~k 2 1! 2 tw~k 2 2!! [13]

¹Df3~k 2 1! 5 G~3~k 2 1! 2 3~k 2 2!!

3 G~Df~k 2 1! 2 Df~k 2 2!!, [14]

here

G~ x! 5 H 1 x $ 0
21 x , 0. [15]

he gradients¹ tw3(k) and¹Df3(k) only take on values of61.
The sign determines the direction in which the param
should be incremented in order to increase the signal m
The learning factorsl tw(k) andlDf determine the magnitude
the change in pulse parameters.

Because the gradients in [13] and [14] are always non
the gradient algorithm converges to a limit cycle instead
single point. If the metric maxima are sharp with respec
parameter variations, the limit cycle will occur about the
timal value. This is the case for offset frequency. In cont
the metric maxima are not as sharp for the pulse width
reduce the radius of the limit cycle about the optimal p
width the learning factorl tw(k) is decremented as (8)

l tw~k! 5 H20 ms k 5 0, 2, . . . , 8
15 ms k 5 10, 12, . . . , 18
10 ms k . 20.

[16]

A fixed learning factorlDf 5 50 Hz is used for tuning th
offset frequency (9). The control algorithm tunes the control
inputs for a fixed number of iterations. The number of it
tions is chosen sufficiently large to allow convergence whe
NQR signal is present.

It is important to consider the effect of noise on the grad
tuning algorithm. We derive an expression for the probab
that the algorithm moves the controlled input in a direction
d

er
ic.

o,
a
o
-
t,
o
e

-
n

t
y
t

maximizes the signal metric on any given iteration. Cons
the simplified update algorithm for a single parameteru,

u ~k 1 1! 5 u ~k! 1 l¹u3~k!, [17]

here the gradient is approximated as

¹u3~k! 5 G~3~k! 2 3~k 2 1!!G~u ~k! 2 u ~k 2 1!!.

[18]

The following definitions are needed:

D3s~k! 5 3s~k! 2 3s~k 2 1! [19]

D3sn~k! 5 3sn~k! 2 3sn~k 2 1!.
[20]

rom [10], it follows thatD3sn(k) is a normal random variab
ith meanmDsn(k) and variancesDsn

2 (k),

mDsn~k! 5 D3s~k!

s Dsn
2 ~k! 5

4s n
2

M
~3s~k! 1 3s~k 2 1!! 1

4s n
4

M
. [21]

The probability that the algorithm moves the parameteru (k)
in the correct direction at thekth iteration is

Pc~k! 5 P$G~D3sn~k!! 5 G~D3s~k!!%. [22]

Using Bayes theorem and the definition ofG( x), the proba
bility Pc(k) can be expressed as

Pc~k! 5 P~D3sn~k! $ 0uD3s~k! $ 0! P~D3s~k! $ 0!

1 P~D3sn~k! , 0uD3s~k! , 0! P~D3s~k! , 0!

[23]

5 F1 2 QSmDsn

sDsn
DGP~D3s~k! $ 0!

1 F1 2 QS2mDsn

sDsn
DGP~D3s~k! , 0! [24]

5 1 2 QS umDsnu
sDsn

D . [25]

Figure 9 shows the probability of a correct update as a fun
of umDsnu/sDsn. This result shows thatPc(k) is always greate
han one-half and approaches 1 whenumDsnu/sDsn . 1. It follows
that the performance of the feedback algorithm is impro
when signal averaging is used to reducesDsn. In addition, the
more sensitive the signal metric is to changes in the p
parameter, that is, the larger the value ofmDsn, the more likely
the algorithm will update correctly.
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312 BLAUCH, SCHIANO, AND GINSBERG
4. EXPERIMENTAL RESULTS

This section presents experimental data that demonstra
ability of the dual tuning algorithm to optimize the pulse wi
and offset frequency. The results from a series of dete
experiments show the effect of the dual tuning algorithm on
ROC curve. A 50-g sample of sodium nitrite at room tem
ature serves as a model compound for the explosive RDX
experiments were conducted near then2 transition at 3.6 MHz

he n2 transition is dominated by a single spin–lattice re-
ation timeT1, of 0.3 s. The spin–spin relaxation timeT2 and
he T*2 lineshape parameter are 6 and 1 ms, respectively

A custom-made 1-kW pulsed spectrometer enables rea
adjustments of the controlled inputs during an experiment15).
The sodium nitrite is packed into a 1-inch diameter, 3-in
long glass vial over which the probe coil is tightly wound. T
quality factor of the probe coil is approximately 150. T
statistical properties of the measurement noise are cont
by mounting the probe coil within a shielded enclosure a
with a one-turn coil connected to an external lowpass Gau
noise source with a cutoff frequency of 10 MHz. The am
tude of the noise source is adjusted so that the noise level
receiver output matched that for an unshielded coil in
laboratory. The amplitude of the applied RF pulses is fixe
that the magnetic field amplitude at the coil center is app
imately 5 G, which is comparable to the field strength use
a commercial NQR detection system (7). The correspondin
output power of the transmitter is approximately 25 W. In
experiments the pulse separation is set at 1 ms.

The dependence of the SORC signal power on pulse w
and offset frequency is experimentally measured. Holding
pulse width constant and with the external noise source tu
off, the steady-state SORC signal was recorded for o

FIG. 9. Probability of gradient algorithm correctly updating paramete
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frequencies ranging from24 to 4 kHz in 50-Hz steps. Th
experiment was repeated for pulse widths ranging from 1
300 ms in 10-ms steps. For each pulse width and offset
quency,NA 5 1000 steady-state SORC signals were filte
and averaged. The signal power3(tw, Df ) for each puls
parameter set was calculated using [7].

The relationship between steady-state signal power
pulse parameters is shown in Fig. 10 and is consistent
earlier results (12, 16). As the offset frequency approach
zero, the NQR signal vanishes. The series of steep va
arises from interference between the NQR signals immed
following and preceding consecutive RF pulses. The rat
the maximum and minimum observed signal power is app
imately 10, corresponding to a 20-dB variation in SNR ac
the pulse parameters used to generate Fig. 10.

The ability of the dual tuning algorithm to maximize
signal power and improve the ROC curve is demonstr
using a series of experiments with the external noise so
connected. In each experiment the initial pulse widths
offset frequencies are chosen astw(0) 5 20 ms, tw(1) 5 40 ms,

f(0) 5 Df(1) 5 0 Hz, andDf(2) 5 50 Hz, respectively
hese parameters are purposely chosen to produce a
ignal power. The exact offset frequency is unknown du
emperature variations of the sample. In each experimen
ual tuning algorithm is terminated after 40 iterations, pro

ng 20 updates in pulse width and 20 updates in offset
uency.
Results from a single tuning experiment without avera

NA 5 1) are shown in Fig. 11.Figure 11a shows the norm
ized signal power at each iteration of the dual tuning algori
while Figs. 11b and 11c show the corresponding value
offset frequency and pulse width. The squares and circles
data obtained with and without a sample present, respect

FIG. 10. SORC signal power as a function of pulse width and o
frequency.
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313DETECTION OF NUCLEAR RESONANCE SIGNALS
whereas the solid curves are best-fit polynomials that sho
trajectory of the signal power and tuned parameters. In
absence of a sample, only a small variation in the signal p
is observed. In contrast, when the sample is present, the
tuning algorithm significantly increases the signal power
hence the SNR of the NQR measurement.

The ROC curves in Fig. 12 demonstrate the effect of f
back on the probabilities of correct detection and false al
Data for the ROC curves are obtained in a series of
experiments, half with the sample present and half with
sample absent. For each experiment, the signal power is
pared against the thresholdG to decide whether a sample
present. LetNd(Nf) represent the number of experiments wh
the sample is present (absent) and the signal power is
thanG. The probabilities of correct detection and false al
areNd/100 andNf/100, respectively. In order to generate
ROC curve the probabilities of correct detection and f
alarm must be generated for a range of different thres
values. Taking into account the peak signal power in Fig
and the variance of the external noise source, each ROC
is generated using 100 values ofG ranging from 0 to 1 in 0.0
steps.

The solid ROC curve in Fig. 12 is generated by fixing
pulse parameters at the initial values. The dashed an
dash–dotted ROC curves are generated using the signal
from the last iteration of the dual tuning algorithm for three
eight pulse parameter updates, respectively. The dual t
algorithm increases the probability of a correct detectio
indicated by the open circles that correspond to a fixed th

FIG. 11. Tuning history when the signal power is derived from a si
NA 5 1) SORC waveform.
he
e

er
ual
d

d-
.

0
e
m-

e
er

e
ld
0
rve

e
the
wer
d
ng
s
h-

old G. Taking into account the statistical variation betw
experiments, there is little change in the probability of f
alarm. Results obtained with the majority-voting rule for th
interactions of the tuning algorithm are shown by the do
curve. In comparison to the dashed ROC curve, the majo
voting rule increased the probability of correct detection
decreased the probability of false alarm.

5. DISCUSSION

Figure 12 shows that the dual feedback algorithm incre
the probability of correct detection, but has limited effec
the probability of false alarm unless the majority-voting rul
used. Compare this result against the theoretical ROC c
shown in Fig. 5. A similar effect is achieved by increasing
signal metric mean. This comparison suggests two conclus
First, the binary signal detection system shown in Fig. 1 ca
used as a conceptual model for describing the performan
a nuclear resonance detection system. Second, adjustin
pulse parameters increases the signal metric mean, an im
ment that is not attainable using signal averaging.

Signal averaging reduces the variance of the noise in
signal metric, but does not increase the mean of the s
metric. In situations where the noise is correlated or the a
able data are limited, the improvement afforded by si
averaging is constrained. Under these circumstances, adj
the pulse parameters to increase the NQR signal powe
vides another tool for improving the ROC curve.

Having motivated the importance for adjusting the p
parameters to improve the ROC curve, we now consider m
ods by which the adjustments can be made. One possibi
to systematically apply different pulse parameter sets
record the corresponding signal metrics. Depending upo

FIG. 12. ROC curves for tuned and untuned pulse parameters.
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314 BLAUCH, SCHIANO, AND GINSBERG
degree of improvement sought, a large number of pulse
rameters must be used, thereby increasing the detection
We demonstrated another approach, based on feedback c
concepts, that utilizes the measured signal to adjust
parameters automatically, thereby maximizing the NQR s
power. In comparison to the former approach, the feed
algorithm determines the optimal parameters using fewer
ations.

In addition to increasing the probability of correct detect
we also showed that the feedback algorithm generates a
of signal metric values that can be used to reduce the p
bility of false alarm. A majority-voting rule was implement
and the results in Fig. 12 show a reduction in the probabili
false alarm and an increase in the probability of correct d
tion.

Figure 13 shows that the observed reduction in the pr
bility of false alarm is consistent with that predicted by [6]. T
solid curve is the ROC curve obtained using the untu
parameters and a decision rule based on a single vote.
data, along with [6], were used to predict the ROC cu
(dash–dotted) that would be obtained for the same fixed
parameters and a majority-voting rule based on four vote
comparison, the experimentally generated ROC curve u
the dual tuning algorithm with a majority-voting rule based
four votes is shown by the dashed curve. The improve
between the predicted and experimental ROC curves
majority voting is due to the increase in the probability
correct detection following each iteration of the dual tun
algorithm.

Two modifications are needed to further improve the
formance of the dual tuning algorithm. First, the current a
rithm may become trapped at a local maximum. Referrin
Fig. 10, observe that the maxima on either side of e

FIG. 13. Experimental and predicted ROC curves using the majo
voting rule.
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resonance are smaller than the surrounding maxima. Se
the algorithm requires, as an input, the steady-state respo
the magnetization to the pulse sequence. This is not a limit
when the spin–lattice relaxation time is short, as is the cas
RDX. On the other hand, TNT has a much larger spin–la
relaxation time than RDX and a short spin–spin relaxa
time. As a result, for TNT, it is difficult to obtain a steady-st
waveform. For these situations, the dual tuning algorithm
be modified to take into account the dynamic response o
magnetization signal to the pulse sequence. We are cur
developing a dual tuning algorithm that overcomes bot
these limitations by taking into account the dynamic beha
of the NQR response.

6. CONCLUSION

This paper investigated the effect of feedback on the R
curve of an NQR detection system. We successfully dem
strated that a gradient tuning algorithm can automatically
just two pulse parameters so that the nuclear resonance
power is increased. As a result, the probability of cor
detection is raised. We used a majority-voting rule that
advantage of the information generated at each iteration o
feedback algorithm. The majority-voting rule reduced
probability of false alarm and further increased the probab
of correct detection. The use of feedback to improve the R
curve in nuclear resonance detection systems is benefic
situations where correlated noise is present and the
parameter values that yield the largest signal amplitude
initially unknown.
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